On complete 4-partite graphs with spanning maximal planar subgraphs
Date of Publication
2018
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Mathematics
Subject Categories
Mathematics
College
College of Science
Department/Unit
Mathematics and Statistics
Thesis Adviser
Isagani B. Jos
Defense Panel Chair
Severino B. Gervacio
Defense Panel Member
Francis Joseph H. Campena
Leonor A. Ruivivar
Yvette F. Lim
Neil M. Mame
Abstract/Summary
A spanning maximal planar subgraph T = (V E0) is a spanning planar subgraph of a simple, finite, undirected graph G = (V E), with the property of being a maximal planar graph. That is, there exists a drawing of T on the plane, such that there are no edge-crossings and all the regions of T are bounded by exactly three edges. We refer to finding a spanning maximal planar subgraph of G, as the SMPS problem. This problem belongs to the problem of graph planarization, and we discuss how the SMPS is related to the concepts of graph planarization. In this study, we tackle the SMPS problem for complete 4-partite graphs. It is shown that for the class of graphs K1 1 1 z and K1 1 y z , a SMPS will exist if and only if z 2 f1 2g and jy {u100000} zj 1, respectively. The SMPS of these graphs were utilized to construct SMPS for more general complete 4-partite graphs K1 x y z and Kw x y z with larger order, leading to relationships between the cardinalities w x y and z. Such construction of larger SMPS requires various methods of adding vertices, and consequently edges, to a maximal planar graph. These methods are elaborated in detail, and the conditions when they can be carried out are discussed. Algorithms were developed with the aid of these methods in generating larger SMPS. It is also presented here how the SMPS problem for complete tripartite graphs could be used to solve some problems in the complete 4-partite case. The results produced in the study were applied to complete 4-partite graphs with order at most 15, to classify which among the configurations of cardinalities of the four partite sets induce a complete 4-partite graph with a SMPS. A necessary and sufficient condition in order for a SMPS to exist in any complete 4-partite graph was also found in this research.
Abstract Format
html
Language
English
Format
Electronic
Accession Number
CDTG007628
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
1 computer disc; 4 3/4 in.
Keywords
Graph theory
Recommended Citation
Estrada, T. B. (2018). On complete 4-partite graphs with spanning maximal planar subgraphs. Retrieved from https://animorepository.dlsu.edu.ph/etd_doctoral/553