Rainfall-runoff analysis for designing low impact development (LID) to mitigate flooding in an urban area
Added Title
Rainfall-runoff analysis for designing low impact development (LID) to mitigate flooding in an urban catchment
Date of Publication
2018
Document Type
Bachelor's Thesis
Degree Name
Bachelor of Science in Civil Engineering with Spec in Hydraulics and Water Resources Engg
College
Gokongwei College of Engineering
Department/Unit
Civil Engineering
Thesis Adviser
Marla Chua Maniquiz Redillas
Defense Panel Member
Mario P. De Leon
Joel G. Galupino
Maria Emilia P. Sevilla
Abstract/Summary
The rise of urbanization has led to various land developments that often results to the application of impervious layers to support the progression, negatively affecting the infiltration capacity of the cities in the process. Simultaneously, the popularity of green engineering solutions has also been steadily increasing, given its potential as a solution to the aforementioned problem with the additional benefit of being environmentally friendly. Low impact development (LID), is one of such solutions. LIDs mimic the natural process of the water cycle by reintroducing pervious surfaces, further supplementing the existing drainage structures. The development of this system, however, is highly dependent on the availability of the hydrologic data to allow characterization of the rainfall-runoff relationship, which is vital in designing efficient and economic LID.
In the Philippines, the attributes of runoff are unaccounted for, while rainfall is not characterized extensive enough hence the primary objective of the research is to identify the rainfall and runoff characteristics in San Juan Water Quality Management Area (San Juan WQMA). Rainfall data was analyzed through multiple statistical analysis such as frequency of occurrence, distribution, and probability analysis to characterize rainfall.
For the application of LID, it was found that the design storm would have a mean intensity of 7.6mm/hour or about 28 mm of daily rainfall depth. A rainfall-runoff simulation was also conducted to quantify the relationship of rainfall and runoff, which is represented by the runoff coefficient, which was established to be 0.7781, above the range of the standards set by the Department of Public Works and Highways. The principles of water quality volume were then employed to obtain a theoretical runoff for every part of the San Juan WQMA using the factors retrieved from the analysis.
Abstract Format
html
Language
English
Format
Accession Number
TU21626
Shelf Location
Archives, The Learning Commons, 12F, Henry Sy Sr. Hall
Physical Description
xv, 171 leaves : illustrations (some color) ; 30 cm.
Keywords
Hydraulics; Hydraulic engineering
Recommended Citation
Avellano, J. J., Choy, A. I., Lee, K. D., & Serrano, A. S. (2018). Rainfall-runoff analysis for designing low impact development (LID) to mitigate flooding in an urban area. Retrieved from https://animorepository.dlsu.edu.ph/etd_bachelors/7414