Single player tracking in multiple sports videos
Date of Publication
2015
Document Type
Bachelor's Thesis
Degree Name
Bachelor of Science in Computer Science
College
College of Computer Studies
Department/Unit
Computer Science
Thesis Adviser
Joel P. Ilao
Defense Panel Member
Jocelynn W. Cu
Clement Y. Ong
Macario O. Cordel, III
Abstract/Summary
Vision-based analysis of sports videos provides a consistent and concise performance statistics which are essential for developing athlete training programs. Existing applications such as Sport VU [8] and SAGIT [17], are vision-based systems for analyzing player performance which requires precise and rigid setup of equipment. This limits the application to large organizations. In order to provide the same service for minor league coaches, the objective of the study is to develop a tracking system capable of adapting multiple camera from any vantage point for tracking.
The developed system tracks a selected player using Speeded-Up Robust Features (SURF) with Symmetric Nearest Neighbor Filtering, and Kalman filter for object tracking. Using the spatial overlap metric, the average tracking accuracy of the system is 40% with a tracking precision of 74% in basketball clips wherein tracked player is un-occluded. On the other hand, the tracking accuracy during occlusion significantly drops due to the implemented motion models even with the use of Kalman Filter as a motion estimator.
With the use of multiple cameras, cross-correlation is applied on the translated 2D coordinates of the target to synchronize location information from each camera. The synchronized data are averaged together into a single representation to decrease the location error. Improvement after data averaging is dependent on the availability of reliable data. A reliable data with a tracking accuracy of 59.8% and tracking precision of 93.8% could improve location data by as much as 70%
Abstract Format
html
Language
English
Format
Accession Number
TU20025
Shelf Location
Archives, The Learning Commons, 12F, Henry Sy Sr. Hall
Physical Description
1 v., various foliations ; 28 cm.
Recommended Citation
Petilla, C. B., Yap, G. G., Yuson, P. L., & Zheng, N. Y. (2015). Single player tracking in multiple sports videos. Retrieved from https://animorepository.dlsu.edu.ph/etd_bachelors/10962