The aggregate of a graph
College
College of Science
Department/Unit
Mathematics and Statistics Department
Document Type
Archival Material/Manuscript
Publication Date
10-2007
Abstract
Let G = (V, E) be a finite, undirected graph containing no loops nor multiple edges, where V is the vertex set with N points/vertices and E is the edge set containing M lines. The token of the edge e in G is the number of neighboring edges of e while the aggregate of G, denoted by v(G), is the sum of the each token of e ∈ E. The notion of the rational weight of G by Guerrero, Guerrero and Artes is the sum of the degree vertices in G divided by the order of G.
This paper investigates the properties of the graph parameter v(G) and illustrates this concept to some special classes of graphs, such as: paths, cycles, fans, wheel graphs, bipartite graphs, complete graphs and trees. In addition, this paper studies the relationship of v(G) to the aggregate and rational weight of the line graph of G. Furthermore, the calculation of the aggregate of a newly generated graph from the old ones through join and product operations.
html
Recommended Citation
Lapus, R. R. (2007). The aggregate of a graph. Retrieved from https://animorepository.dlsu.edu.ph/faculty_research/7819
Disciplines
Mathematics
Keywords
Graph theory
Upload File
wf_no