Theoretical investigation on single-wall carbon nanotubes doped with nitrogen, pyridine-like nitrogen defects, and transition metal atoms

College

College of Science

Department/Unit

Physics

Document Type

Article

Source Title

Journal of Nanomaterials

Volume

2012

Publication Date

7-16-2012

Abstract

This study addresses the inherent difficulty in synthesizing single-walled carbon nanotubes (SWCNTs) with uniform chirality and well-defined electronic properties through the introduction of dopants, topological defects, and intercalation of metals. Depending on the desired application, one can modify the electronic and magnetic properties of SWCNTs through an appropriate introduction of imperfections. This scheme broadens the application areas of SWCNTs. Under this motivation, we present our ongoing investigations of the following models: (i) (10, 0) and (5, 5) SWCNT doped with nitrogen (CN x NT), (ii) (10, 0) and (5, 5) SWCNT with pyridine-like defects (3NV-CN x NT), (iii) (10, 0) SWCNT with porphyrine-like defects (4ND-CN x NT). Models (ii) and (iii) were chemically functionalized with 14 transition metals (TMs): Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Pt and Au. Using the spin-unrestricted density functional theory (DFT), stable configurations, deformations, formation and binding energies, the effects of the doping concentration of nitrogen, pyridine-like and porphyrine-like defects on the electronic properties were all examined. Results reveal that the electronic properties of SWCNTs show strong dependence on the concentration and configuration of nitrogen impurities, its defects, and the TMs adsorbed. Copyright © 2012 Michael Mananghaya et al.

html

Digitial Object Identifier (DOI)

10.1155/2012/104891

Disciplines

Physics

Keywords

Carbon nanotubes; Doped semiconductors; Pyridine; Density functionals

Upload File

wf_yes

This document is currently not available here.

Share

COinS