Surface morphological and wetting characterization of the hydrophobic and superhydrophobic leaves of Pistia stratiotes L., Salvinia molesta D.Mitch., Ananas comosus (L.) Merr. and Dyckia platyphylla L.B. Smith for bioinspired oil adsorbent materials
College
College of Science
Department/Unit
Biology
Document Type
Conference Proceeding
Source Title
IOP Conference Series: Materials Science and Engineering
Volume
479
Issue
1
Publication Date
3-11-2019
Abstract
In this paper, the surface morphology and wetting properties towards deionized water and pure oil samples with varying carbon chain lengths of adaxial and abaxial leaf surfaces of Pistia stratiotes L., Salvinia molesta D.Mitch., Ananas comosus (L.) Merr. and Dyckia platyphylla L.B. Smith were characterized. The surface morphological characterization showed that P. stratiotes L. has uniseriate trichomes on adaxial (ad) and abaxial (ab) surface and S. molesta D.Mitch. has multifaceted egg-beater shaped trichomesad and achlorophyllous filamentsab. Both surfaces of the bromeliads, A. comosus (L.) Merr. and D. platyphylla L.B. Smith have peltate scutiform trichomes. Overall, P. stratiotes L. has the greatest trichome density (no.of trichomes/mm2) of ad 36.77 and ab40.10 among A. comosus (L.) Merr. > D. platyphylla L.B. Smith> S. molesta D.Mitch. Contact angle measurement showed that P. stratiotes L. has the best water repellency having (154. 39 3.26)ad > S. molesta D.Mitch. > A. comosus (L.) Merr. > D. platyphylla L.B. Smith and (147.90 3.17)ab > A. comosus (L.) Merr. > D. platyphylla L.B. Smith > S. molesta D.Mitch. Lastly, P. stratiotes L. showed the best common pure oil adsorption capacity among the four species. Therefore, the understanding on the fundamental concept on how the leaf surface of P. stratiotes L. adsorbs the oil and reacts in response to various solvents adsorbed on the leaf surface was established. © 2019 Institute of Physics Publishing. All rights reserved.
html
Digitial Object Identifier (DOI)
10.1088/1757-899X/479/1/012003
Recommended Citation
Silvestre, M. T., Zambrano, A. C., Linis, V. C., & Janairo, J. B. (2019). Surface morphological and wetting characterization of the hydrophobic and superhydrophobic leaves of Pistia stratiotes L., Salvinia molesta D.Mitch., Ananas comosus (L.) Merr. and Dyckia platyphylla L.B. Smith for bioinspired oil adsorbent materials. IOP Conference Series: Materials Science and Engineering, 479 (1) https://doi.org/10.1088/1757-899X/479/1/012003
Keywords
Water lettuce—Morphology; Pineapple—Morphology; Bromeliaceae—Morphology; Salvinia molesta—Morphology; Adsorption (Biology)
Upload File
wf_yes