Biochar systems in the water-energy-food nexus: The emerging role of process systems engineering

College

Gokongwei College of Engineering

Department/Unit

Chemical Engineering

Document Type

Article

Source Title

Current Opinion in Chemical Engineering

Volume

18

First Page

32

Last Page

37

Publication Date

1-1-2017

Abstract

Biochar application to soil is a potentially scalable carbon management strategy with the capability of achieving negative greenhouse gas emissions. In addition, biochar is also linked to the water-energy-food nexus (WEFN) through its potential to modify soil properties to improve agricultural productivity. Potential benefits include increased yield and reduced demand for water, fertilizers and other inputs. However, the current literature on biochar is highly fragmented, with a significant research gap in system-level analysis to synchronize production, logistics and application into a sustainable carbon management strategy. Process systems engineering (PSE) can provide a framework to allow the potential benefits of biochar systems to be optimized. This article gives an overview of biochar as a strategy to address carbon management and WEFN issues, reviews relevant scientific literature, analyzes bibliometric trends, and maps potential areas for the application of PSE to the planning of large-scale biochar systems. © 2017 Elsevier Ltd

html

Digitial Object Identifier (DOI)

10.1016/j.coche.2017.08.005

Disciplines

Chemical Engineering

Keywords

Biochar; Agricultural productivity; Greenhouse gas mitigation; Systems engineering

Upload File

wf_yes

This document is currently not available here.

Share

COinS