Crisp and fuzzy optimisation approaches for water network retrofit

College

Gokongwei College of Engineering

Department/Unit

Chemical Engineering

Document Type

Article

Source Title

Chemical Product and Process Modeling

Volume

2

Issue

3

Publication Date

5-17-2007

Abstract

Material reuse/recycle has gained much attention in recent years for both economic and environmental reasons. Process integration techniques for water network synthesis have evolved rapidly in the past decade. With in-plant water reuse/recycle, fresh water and wastewater flowrates are reduced simultaneously. In this work, linear programming and mixed integer linear programming models that include piping cost and process constraints are developed to retrofit an existing water network in a paper mill that was not originally designed with process integration techniques. Five scenarios are presented, each representing different aspects of decision-making in real process integration projects. The fifth scenario makes use of fuzzy optimisation to achieve a compromise solution that considers the inherent conflict between maximising water recovery and minimising capital cost for retrofit. Copyright © 2007 The Berkeley Electronic Press. All rights reserved.

html

Digitial Object Identifier (DOI)

10.2202/1934-2659.1040

Disciplines

Chemical Engineering

Keywords

Water reuse—Linear programming

Upload File

wf_no

This document is currently not available here.

Share

COinS