A one-particle time of arrival operator for a free relativistic spin-0 charged particle in (1+1) dimensions

College

College of Science

Department/Unit

Physics

Document Type

Article

Source Title

Annals of Physics

Volume

353

First Page

83

Last Page

106

Publication Date

2015

Abstract

We construct a one-particle TOA operator Tˆ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.2px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">Tˆ canonically conjugate with the Hamiltonian describing a free, charged, spin-0" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.2px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">0, relativistic particle in one spatial dimension and show that it is maximally symmetric. We solve for its eigenfunctions and show that they form a complete and non-orthogonal set. Plotting the time evolution of their corresponding probability densities, it implies that the eigenfunctions become more localized at the origin at the time equal to their eigenvalues. That is, a particle being described by an eigenfunction of Tˆ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.2px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">Tˆ is in a state of definite arrival time at the origin and at the corresponding eigenvalue. We also calculate the TOA probability distribution of a particle in some initial state.

html

Disciplines

Physics

Upload File

wf_no

Share

COinS