A one-particle time of arrival operator for a free relativistic spin-0 charged particle in (1+1) dimensions
College
College of Science
Department/Unit
Physics
Document Type
Article
Source Title
Annals of Physics
Volume
353
First Page
83
Last Page
106
Publication Date
2015
Abstract
We construct a one-particle TOA operator Tˆ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.2px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">Tˆ canonically conjugate with the Hamiltonian describing a free, charged, spin-0" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.2px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">0, relativistic particle in one spatial dimension and show that it is maximally symmetric. We solve for its eigenfunctions and show that they form a complete and non-orthogonal set. Plotting the time evolution of their corresponding probability densities, it implies that the eigenfunctions become more localized at the origin at the time equal to their eigenvalues. That is, a particle being described by an eigenfunction of Tˆ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.2px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">Tˆ is in a state of definite arrival time at the origin and at the corresponding eigenvalue. We also calculate the TOA probability distribution of a particle in some initial state.
html
Recommended Citation
Bunao, J. R., & Galapon, E. A. (2015). A one-particle time of arrival operator for a free relativistic spin-0 charged particle in (1+1) dimensions. Annals of Physics, 353, 83-106. Retrieved from https://animorepository.dlsu.edu.ph/faculty_research/3134
Disciplines
Physics
Upload File
wf_no