Blind first-order perspective distortion correction using parallel convolutional neural networks
College
College of Computer Studies
Department/Unit
Software Technology
Document Type
Article
Source Title
Sensors (Basel, Switzerland)
Volume
20
Issue
17
Publication Date
8-30-2020
Abstract
In this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein three CNNs are trained in parallel, to predict a certain element pair in the 3×3 transformation matrix, M^. The corrected image is produced by transforming the distorted input image using M^-1. The networks are trained from our generated distorted image dataset using KITTI images. Experimental results show promise in this approach, as our method is capable of correcting perspective distortions on images and outperforms other state-of-the-art methods. Our method also recovers the intended scale and proportion of the image, which is not observed in other works.
html
Digitial Object Identifier (DOI)
10.3390/s20174898
Recommended Citation
Del Gallego, N., Ilao, J. P., & Cordel, M. O. (2020). Blind first-order perspective distortion correction using parallel convolutional neural networks. Sensors (Basel, Switzerland), 20 (17) https://doi.org/10.3390/s20174898
Disciplines
Computer Sciences | Software Engineering
Keywords
Neural networks (Computer science); Computer vision; Image processing
Upload File
wf_no