Crowd sourcing through social gaming for community driven ontology engineering, results and observations

College

College of Computer Studies

Department/Unit

Software Technology

Document Type

Conference Proceeding

Source Title

CEUR Workshop Proceedings

Volume

689

First Page

244

Last Page

245

Publication Date

12-1-2010

Abstract

In developing ontology, expert driven approaches lack the scalability to accommodate the vast amount of data on the web. As such, the community is being tapped to build ontologies to cope with highly dynamic data sources. Common problems (like difficulty of the task, quality of output, and incentives needed to motivate the community), as discussed by other authors, are considered. In this paper, we discuss observations on our approach to improve the quality and sustain community ontology refinement though the use of social gaming and interaction. Current observations show that profile and knowledge of the concept in question, understanding and expressivity of the relationships play a key role in the quality of the result.

html

Disciplines

Computer Sciences

Keywords

Crowdsourcing; Self-organizing systems; Knowledge representation (Information theory)

Upload File

wf_no

This document is currently not available here.

Share

COinS