Cloud removal from aerial images using generative adversarial network with simple image enhancement

College

College of Computer Studies

Department/Unit

Software Technology

Document Type

Conference Proceeding

Source Title

ACM International Conference Proceeding Series

First Page

77

Last Page

81

Publication Date

2-8-2020

Abstract

The atmospheric condition of the presence of clouds is one of the biggest problems in most aerial imaging systems. It degrades the visual quality of images leading to the loss of information for ground scenes. Hence, an effective cloud removal algorithm is a significant factor for this kind of problem and other related applications. The proposed cloud removal technique using the generative adversarial network with simple image enhancement (SIE-GAN) is a useful tool in removing cloud formations, most notably in images acquired using Unmanned Aerial Vehicle System (UAVs). This technique showed flexibility in performing the given task with satisfactory results, which is a gauge based on No-Reference Image Quality Metric, specifically the Perception-based Image Quality Evaluator (PIQE). Also, the proposed algorithm outperformed some of existing cloud removal algorithms by producing a better quality output when tested on the too-cloudy satellite images. Overall, the authors introduced a new frontier in generating cloud-free aerial images and added a valuable contribution to the array of cloud removal algorithms. © 2020 ACM.

html

Digitial Object Identifier (DOI)

10.1145/3383812.3383838

Disciplines

Computer Sciences | Software Engineering

Keywords

Imaging systems—Image quality; Drone aircraft in remote sensing; Remote sensing—Atmospheric effects

Upload File

wf_no

This document is currently not available here.

Share

COinS