Spatio-temporal features of human gait kinematics based on extended nearest-neighborhood tracking algorithm
College
College of Science
Department/Unit
Physics
Document Type
Conference Proceeding
Source Title
IFMBE Proceedings
Volume
14
Issue
1
First Page
2811
Last Page
2815
Publication Date
1-1-2007
Abstract
An extended nearest-neighborhood (ENN) tracking algorithm was appropriated in designing spatiotemporal features of human gait kinematics under low illumination. Active markers in the form of light-emitting diodes (LEDs) were positioned at anatomical landmarks to measure the coordinated kinematics of human joints. Human gait is analyzed in various perspectives, e.g. front view, left and right side view of the test subjects whose age range from 18-21 years. Front view gait reveals the center of mass of the subject and the side view gives the angular displacement of each joint in the body with respect to its neighboring joints. Image segmentation and binary labeling were also applied on LED images to determine automatically its threshold value. Results have shown that ENN is more robust than typical Kalman filter in predicting LED positions due to obscured view during gait recording. © International Federation for Medical and Biological Engineering 2007.
html
Digitial Object Identifier (DOI)
10.1007/978-3-540-36841-0_711
Recommended Citation
Ong, P. M., Lopez, S. P., & Pobre, R. F. (2007). Spatio-temporal features of human gait kinematics based on extended nearest-neighborhood tracking algorithm. IFMBE Proceedings, 14 (1), 2811-2815. https://doi.org/10.1007/978-3-540-36841-0_711
Disciplines
Physics
Keywords
Kinematics; Light emitting diodes; Automatic tracking
Upload File
wf_no