Optimization of microwave drying of microalgae nannochloropsis sp. for biofuel production
College
Gokongwei College of Engineering
Department/Unit
Mechanical Engineering
Document Type
Conference Proceeding
Source Title
HNICEM 2017 - 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management
Volume
2018-January
First Page
1
Last Page
5
Publication Date
7-2-2017
Abstract
The increase in demand of power and the depletion of non-renewable sources call for an alternative source of energy. Biodiesel from microalgae is a potential alternative source of energy due to its high lipid content. However, the bulk of the energy requirement to produce biodiesel from microalgae is the drying process. Studies propose that microwave energy may be feasible for the drying process. Thus, this study is aimed to optimize the microwave drying process by means of a design of experiment. A full factorial of two factors each with three levels was selected for the design of experiment. The factors are the mass of the sample and power level of the microwave, and the response of interest was the drying efficiency. Statistical analysis revealed optimum factors setting and the dried biomass product produced under this condition was characterized by Fourier Transform Infrared Spectroscopy and the Gas Chromatograph - Flame Ionization Detector. © 2017 IEEE.
html
Digitial Object Identifier (DOI)
10.1109/HNICEM.2017.8269459
Recommended Citation
Mina, A., Tecson, B., Virtucio, D., Felix, C., Ubando, A. T., Madrazo, C., Baldovino, R. G., Culaba, A. B., Toledo, N., Jimenez, C. N., & Garibay, S. (2017). Optimization of microwave drying of microalgae nannochloropsis sp. for biofuel production. HNICEM 2017 - 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, 2018-January, 1-5. https://doi.org/10.1109/HNICEM.2017.8269459
Disciplines
Energy Systems | Mechanical Engineering
Keywords
Microalgae—Drying; Nannochloropsis—Drying; Microwave drying; Biomass energy
Upload File
wf_yes