FEA of thermal warpage in ball grid array with consideration of molding compound residual strain compared to experimental measurements

College

Gokongwei College of Engineering

Department/Unit

Mechanical Engineering

Document Type

Conference Proceeding

Source Title

2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018

Publication Date

3-12-2019

Abstract

As semiconductor devices continue to advance in terms of having smaller and denser designs, the semiconductor packages, in turn, must keep up with the changes to prevent the semiconductor chips from damages caused by internal and external factors. In this paper, a 3D finite element model was developed based on the dimensions of the actual Ball Grid Array. The material properties applied are derived from a previous study by Tsai, et al in 2008. The model was subjected to the same thermal loadings as the experiment and was compared at each temperature level. A quarter model was made and appropriate constraints were applied to determine the proper thermal warpage calculations. The molding compound residual strain was implemented using the command object feature or the Mechanical ANSYS Parametric Design Language (MAPDL). A mesh independence test was also done to determine at which mesh setting yields a stable warpage calculation. The results from the 3D simulation compared to the experimental measurements and were determined to be reasonably consistent. This validates and verifies the geometry, material properties, and boundary conditions applied to the developed 3D FEM that would be necessary for further Finite Element Analysis (FEA). © 2018 IEEE.

html

Digitial Object Identifier (DOI)

10.1109/HNICEM.2018.8666377

Disciplines

Mechanical Engineering

Keywords

Ball grid array technology; Finite element method; Semiconductors—Packaging

Upload File

wf_yes

This document is currently not available here.

Share

COinS