Prediction of CO2 storage site integrity with rough set-based machine learning
College
Gokongwei College of Engineering
Department/Unit
Chemical Engineering
Document Type
Article
Source Title
Clean Technologies and Environmental Policy
Volume
21
Issue
8
First Page
1655
Last Page
1664
Publication Date
10-1-2019
Abstract
CO2 capture and storage (CCS) and negative emissions technologies (NETs) are considered to be essential carbon management strategies to safely stabilize climate. CCS entails capture of CO2 from combustion products from industrial plants and subsequent storage of this CO2 in geological formations or reservoirs. Some NETs, such as bioenergy with CCS and direct air capture, also require such CO2 sinks. For these technologies to work, it is essential to identify and use only secure geological reservoirs with minimal risk of leakage over a timescale of multiple centuries. Prediction of storage integrity is thus a difficult but critical task. Natural analogues or naturally occurring deposits of CO2, can provide some information on which geological features (e.g., depth, temperature, and pressure) are predictive of secure or insecure storage. In this work, a rough set-based machine learning (RSML) technique is used to analyze data from more than 70 secure and insecure natural CO2 reservoirs. RSML is then used to generate empirical rule-based predictive models for selection of suitable CO2 storage sites. These models are compared with previously published site selection rules that were based on expert knowledge. Graphic abstract: © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
html
Digitial Object Identifier (DOI)
10.1007/s10098-019-01732-x
Recommended Citation
Aviso, K. B., Janairo, J. B., Promentilla, M. B., & Tan, R. R. (2019). Prediction of CO2 storage site integrity with rough set-based machine learning. Clean Technologies and Environmental Policy, 21 (8), 1655-1664. https://doi.org/10.1007/s10098-019-01732-x
Disciplines
Chemical Engineering
Keywords
Carbon sequestration; Artificial intelligence
Upload File
wf_yes