Estimating liquefaction susceptibility using machine learning algorithms with a case of Metro Manila, Philippines

College

Gokongwei College of Engineering

Department/Unit

Civil Engineering

Document Type

Article

Source Title

Applied Science

Volume

13

Publication Date

2023

Abstract

Soil liquefaction is a phenomenon that can occur when soil loses strength and behaves like a liquid during an earthquake. A site investigation is essential for determining a site's susceptibility to liquefaction, and these investigations frequently generate project-specific geotechnical reports. However, many of these reports are frequently stored unused after construction projects are completed. This study suggests that when these unused reports are consolidated and integrated, they can provide valuable information for identifying potential challenges, such as liquefaction. The study evaluates the susceptibility of liquefaction by considering several geotechnical factors modeled by machine learning algorithms. The study estimated site-specific characteristics, such as ground elevation, groundwater table elevation, SPT N-value, soil type, and fines content. Using a calibrated model represented by an equation, the investigation determined several soil properties, including the unit weight and peak ground acceleration (PGA). The study estimated PGA using a linear model, which revealed a significant positive correlation (R-2 = 0.89) between PGA, earthquake magnitude, and distance from the seismic source. On the Marikina West Valley Fault, the study also assessed the liquefaction hazard for an anticipated 7.5 M and delineated a map that was validated by prior studies.

html

Digitial Object Identifier (DOI)

10.3390/app13116549

Disciplines

Civil Engineering

Keywords

Soil liquefaction--Philippines--Metro Manila; Machine learning; Earthquake engineering

Upload File

wf_no

This document is currently not available here.

Share

COinS