The role of molecular dynamics simulations in elucidating interactions between antimicrobial peptides and model biological membranes

College

College of Science

Department/Unit

Chemistry

Document Type

Article

Source Title

Kimika

Volume

33

Issue

1

Publication Date

2021

Abstract

In addressing the global problem of antimicrobial resistance, an emerging class of molecules called antimicrobial peptides (AMPs) are being widely studied. Their interactions with cell membranes are instrumental in their killing action, usually by forming pores or translocating to act on an internal target. Molecular dynamics (MD) simulations have played an essential role in understanding the atomistic mechanisms of such interactions. This review will highlight key findings from various MD studies, such as the formation of nanoaggregates and different types of pores. We will also discuss the role of selecting the membrane model composition, the level of detail in the simulation, and the choice of force field. It is evident in this review that our understanding of the interactions of AMPs and membranes has grown over the recent years through the help of MD simulations. Still, remaining concerns in MD studies of such systems must be addressed to gain more information.

Keywords: antimicrobial peptides; molecular dynamics simulations; peptide-membrane systems

html

Disciplines

Chemistry

Keywords

Peptide antibiotics; Membranes (Biology); Molecular dynamics

Upload File

wf_no

This document is currently not available here.

Share

COinS