A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying

College

Gokongwei College of Engineering

Document Type

Article

Source Title

Food and Bioproducts Processing

Volume

94

First Page

637

Last Page

648

Publication Date

2015

Abstract

A porous medium transport model with a distributed sublimation front is developed for low pressure freeze drying of beef by radiant surface heating and volumetric microwave heating. The model incorporates the importance of Knudsen flow in porous materials during low pressure freeze drying. This effort is part of fundamental physics- based framework building for simulating food and biomaterial processes involving rapid evaporation/sublimation. Temperature, pressure and ice saturation histories were computed. Drying rates and spatial temperature profiles showed excellent agreement with literature experimental data. Sublimation front width, a novel result, is seen to increase as ice saturation decreases, justifying the importance of this distributed sublimation formulation in contrast with the sharp sublimation front commonly employed in literature. The insulation effect of the gas fraction in the pores is observed by the slow movement of the sublimation front in 'thick' samples. Effects of porosity, initial ice saturation and microwave heating are illustrated

html

Disciplines

Materials Science and Engineering

Keywords

Porous materials—Drying; Freeze-drying

Upload File

wf_no

This document is currently not available here.

Share

COinS