Effects of quantization noise and distortion in EPWM transmitters for OFDM signal amplification
College
Gokongwei College of Engineering
Department/Unit
Electronics And Communications Engg
Document Type
Conference Proceeding
Source Title
IEEE 69th Vehicular Technology Conference
Publication Date
2009
Abstract
The envelope pulse-width modulation (EPWM) transmitter has been studied to address the power efficiency issue on the linear amplification of OFDM signals. However, the delta- sigma (Delta-Sigma) modulator in the EPWM transmitter generates quantization noise that degrades signal quality. In this paper, OFDM in-band noise characteristics of EPWM transmitters are analyzed for first and second order Delta-Sigma modulators. Distortion noise power due to envelope clipping of OFDM signals is also analyzed. The combined effects of noise and distortion on the error vector magnitude (EVM) and adjacent channel leakage power ratio (ACLR) are examined. Simulations to validate the total performance were performed using the IEEE 802.11a OFDM signal. Results showed good agreement with analytical results considering a linear-approximation gain for the 1-bit quantizer in Delta-Sigma modulators. The first order EPWM transmitter provides slightly better EVM and ACLR values than second order EPWM transmitters, since the effective quantizer gain of second order Delta-Sigma modulators is smaller, that limits the noise- shaping capability of Delta-Sigma modulators. A 0.1% clipping probability for a first order EPWM transmitter with an oversampling ratio of 32 and a three-pole Butterworth bandpass filter gives an EVM of 1.8% and ACLR of-37.9 dB.
html
Recommended Citation
Umali, E. M., Kawazoe, K., Toyama, Y., & Yamao, Y. (2009). Effects of quantization noise and distortion in EPWM transmitters for OFDM signal amplification. IEEE 69th Vehicular Technology Conference Retrieved from https://animorepository.dlsu.edu.ph/faculty_research/12565
Disciplines
Electrical and Computer Engineering
Keywords
Pulse modulation (Electronics); Orthogonal frequency division multiplexing; Electronic noise
Upload File
wf_no