A second-order kinetic model on the survival profile of Candida albicans in biofilms

College

College of Science

Department/Unit

Biology

Document Type

Article

Source Title

Current Research in Environmental and Applied Mycology

Volume

9

Issue

1

First Page

187

Last Page

193

Publication Date

1-1-2019

Abstract

The prevalent use of indwelling medical devices has almost paralleled the increasing frequency of fungal infections commonly found in clinical practice. The present study examined Candida albicans biofilms on the surfaces of polyvinyl chloride (PVC) endotracheal tube, silicone urinary catheter, and silicone nasogastric tube. The viable C. albicans in biofilms was quantified using standard plating procedure. Several kinetic rate equations were employed to describe the survival profile of the viable population. Candida albicans exhibited remarkably heterogeneous growth patterns on the different medical devices reflecting variations on its adhesion potential and biofilm formation. A significant difference in the viability of C. albicans in biofilms on the surfaces of the medical devices was observed among monitoring points. Survival profile of C. albicans in biofilms followed a second-order kinetic model. Quantitative descriptions regarding growth patterns and kinetic profile of the fungus were obtained on these model biofilms. These findings can provide additional information to better understand the complex biology of C. albicans and to possibly explain the resistance patterns of fungal biofilms with the existing available antifungal drugs. © 2019, Current Research in Environmental & Applied Mycology.

html

Digitial Object Identifier (DOI)

10.5943/cream/9/1/16

Keywords

Mycoses; Medical instruments and apparatus—Microbiology; Polyvinyl chloride; Silicon polymers

Upload File

wf_no

This document is currently not available here.

Share

COinS