Assessing the economic ripple effects of critical infrastructure failures using the dynamic inoperability input-output model: A case study of the Taal volcano eruption
College
School of Economics
Department/Unit
Economics
Document Type
Article
Source Title
Sustainable and Resilient Infrastructure
Volume
8
Issue
S1
First Page
68
Last Page
84
Publication Date
2023
Abstract
Critical infrastructure systems are essential in sustaining people’s livelihoods and the operation of economic sectors. In this paper, we extend the dynamic inoperability IO model (DIIM), we evaluate the resilience of economic sectors given the initial functionality loss and recovery time of an infrastructure. The resulting model is applied in a case study of the 2020 eruption of Taal Volcano in the Philippines. The initial inoperability and recovery period parameters are used in the 14-sector DIIM. The dynamic recovery behaviors of the sectors are plotted over the disaster timeline based on two metrics: (1) economic loss, which is the monetary value of the damage; and (2) inoperability, which is the dimensionless loss relative to the total production output of each sector. The DIIM template and case study results from this paper can provide policy insights to enhance disaster resilience planning for future disasters.
html
Digitial Object Identifier (DOI)
10.1080/23789689.2022.2127999
Recommended Citation
Santos, J., Roquel, K. Z., Lamberte, A. E., Tan, R. R., Aviso, K. B., Tapia, J. D., Solis, C., & Yu, K. S. (2023). Assessing the economic ripple effects of critical infrastructure failures using the dynamic inoperability input-output model: A case study of the Taal volcano eruption. Sustainable and Resilient Infrastructure, 8 (S1), 68-84. https://doi.org/10.1080/23789689.2022.2127999
Disciplines
Economics | Emergency and Disaster Management
Keywords
Infrastructure (Economics)—Philippines; Emergency management—Philippines; Taal, Mount (Philippines)—Eruptions; Volcanic eruptions—Economic aspects—Philippines
Upload File
wf_no