Date of Publication
10-11-2021
Document Type
Master's Thesis
Degree Name
Master of Science in Mechanical Engineering
Subject Categories
Mechanical Engineering
College
Gokongwei College of Engineering
Department/Unit
Mechanical Engineering
Thesis Advisor
Aristotle T. Ubando
Defense Panel Chair
Bienvenido Biona
Defense Panel Member
Cynthia Madrazo
Jeremias Gonzaga
Abstract/Summary
One of the largest contributors to climate change is greenhouse gasses. Due to this, various countries have cooperated to limit the increase in global temperatures to less than 2 °C more than the pre-industrial levels. The United Nations Intergovernmental Panel on Climate Change predicted that negative emissions should be achieved to reach the climate goals. This further establishes the need to develop renewable energy systems and carbon capture and storage systems. Chemical looping combustion is a technology that could potentially aid in achieving the climate goals. This is because of its inherent capability to capture carbon dioxide with a low energy penalty. This study developed a life cycle assessment for chemical looping combustion of rice husk in the Philippines. The production of rice husk was modeled using the Philippines data, and imports were modeled using transport and electricity data. The chemical looping combustion plants were modeled based on experimental results and three types of power plants were compared. The conventional coal power plant, coal chemical looping combustion plant, and biomass chemical looping combustion plant were analyzed. The findings showed that the conventional coal-fired power plant had the greatest overall emissions, and the biomass plant had the least. The sources of their environmental impact varied depending on the fuel used. The biomass plant also had a net negative global warming potential due to the capture of carbon from the facility.
Abstract Format
html
Language
English
Keywords
Fluidized-bed combustion; Carbon sequestration; Life cycle costing
Recommended Citation
Mercado, J. D. (2021). Development of a life cycle assessment for chemical looping combustion. Retrieved from https://animorepository.dlsu.edu.ph/etdm_mecheng/4
Upload Full Text
wf_yes
Embargo Period
1-26-2022