Date of Publication
2-2023
Document Type
Master's Thesis
Degree Name
Bachelor of Science in Chemical Engineering (Honors) - Ladderized
Subject Categories
Chemical Engineering
College
Gokongwei College of Engineering
Department/Unit
Chemical Engineering
Thesis Advisor
John Frederick D. Tapia
Lawrence P. Belo
Defense Panel Chair
Angelo Earvin S. Choi
Defense Panel Member
Joseph R. Ortenero
Raymond Girard R. Tan
Abstract/Summary
With the abnormal climate conditions and increased average temperatures that the globe is experiencing, CO2 capture, utilization, and storage (CCUS) is one of the climate change mitigation measures being employed. This supply chain of CO2 involves its capture from point sources, such as fossil fuel-fired power plants, and its transportation for utilization to generate valuable products or for permanent storage in geological reservoirs. A superstructure was constructed to show the possible pathways of CO2 in this supply chain of CCUS. In planning and establishing these CCUS systems, it is important to consider several factors, such as CO2 generation rates, market demand and limitations, captured stream impurity concentrations, injectivity limits, storage capacities, utilization times, operating times, emission factors, carbon footprint reduction, capture efficiencies, capture costs, utilization revenues, and social discounting. In this study, two mixed-integer linear programming (MILP) decision support models that minimize the social cost of emitting CO2 and the total penalty of a CCUS system considering these mentioned parameters were developed. The models were then tested on two illustrative case studies each, one a CCU system with six CO2 sources and four utilization facilities and the other a CCUS system with eight sources, four utilization facilities, and three storage sinks, to generate insights on how to utilize the model and how the results are investigated. These models can help a user determine how much CO2 must be captured, utilized, stored, and released, identify which capture technologies are appropriate to capture the CO2, and estimate how much social costs, capture costs, and utilization revenues the system will incur throughout its lifetime. The dependence of the optimal solution on the exact costs, prices, and other important parameters, such as SDRs, concentration, flow rate limits, and capacities, emphasizes the necessity of the developed models in optimizing the planning and design of CCUS systems.
Abstract Format
html
Language
English
Format
Electronic
Keywords
Carbon sequestration
Recommended Citation
Cruz, T. D. (2023). Optimal planning and design of CO2 capture, utilization, and storage (CCUS) systems. Retrieved from https://animorepository.dlsu.edu.ph/etdm_chemeng/11
Upload Full Text
wf_yes
Embargo Period
3-15-2023