Date of Publication

11-27-2025

Document Type

Master's Thesis

Degree Name

Master of Science in Chemistry

Subject Categories

Chemistry

College

College of Science

Department/Unit

Chemistry

Thesis Advisor

Aldrin P. Bonto

Defense Panel Chair

Raymond S. Malabed

Defense Panel Member

Katherine Yasmin M. Garcia
Vincent Antonio S. Ng

Abstract (English)

Rice (Oryza sativa) is one of the world’s most widely cultivated cereal crops and serves as a staple food for over half of the global population. Pigmented rice varieties, distinguished by their red to black pericarp, are increasingly regarded as nutritionally superior to non-pigmented rice due to their high levels of health-promoting phenolic compounds concentrated in the bran. Traditional spectrophotometric and chromatographic assays for quantifying key phytochemicals, total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), and total proanthocyanidin content (TPAC), are accurate but labor-intensive, requiring extensive sample preparation, derivatization, and careful optimization of analytical parameters. Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy offers a rapid, minimally preparative alternative for assessing these compounds. In this study, TPC, TFC, TAC, and TPAC were quantified in 239 pigmented rice varieties, and mid-IR spectra of their extracts were collected within the 4000–400 cm⁻¹ region. Several regression algorithms—k-Nearest Neighbor (KNN), Decision Tree (DT), Gradient Boosting (GB), and Artificial Neural Network (ANN)—were evaluated to establish predictive models. Prior to modeling, the FTIR spectra were subjected to multiple preprocessing techniques, including minimum–maximum normalization (MMN), vector normalization (VN), and standard normal variate (SNV), each combined with first-derivative (+1D) and second-derivative (+2D) transformations. The optimal model–pretreatment combinations were ANN with VN + 2D for TPC, KNN with VN + 1D for TFC, GB with MMN + 1D for TAC, and GB with VN + 1D for TPAC. The corresponding best prediction accuracies were 34.93% (TPC), 35.63% (TFC), 70.16% (TAC), and 38.71% (TPAC). Although predictive performance varied across phytochemical classes, the results demonstrate the promise of integrating FTIR spectroscopy with machine-learning approaches as a high-throughput, cost-effective strategy for profiling phenolic compounds in pigmented rice with minimal sample preparation.

Abstract Format

html

Abstract (Filipino)

Ang palay (Oryza sativa) ay isa sa mga pinaka-malawak pananim na butil sa buong mundo at nagsisilbing pangunahing pagkain ng mahigit kalahati ng populasyon ng mundo. Ang mga may kulay o pigmented na uri ng bigas, na may pericarp na mula pula hanggang itim ang kulay, ay mas pinahahalagahan sa kasalukuyan dahil mas mayaman ang mga ito sa mga phenolic compound na may mahalagang benepisyo sa kalusugan. Ang mga sangkap na ito ay mas maraming matatagpuan sa ipa kumpara sa mga hindi pigmented na uri ng bigas. Ang mga karaniwang pamamaraang ginagamit sa pagsukat ng mahahalagang phytochemical tulad ng total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), at total proanthocyanidin content (TPAC) ay ang spectrophotometric at chromatographic assay. Gayunpaman, ang mga pamamaraang ito ay matrabaho dahil nangangailangan ng masusing paghahanda ng sample, derivatization, at masusing pag-aayos ng mga parametro. Bilang mas mabilis na alternatibo, nag-aalok ang Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy ng paraan ng pagsusuri na halos hindi na nangangailangan ng elaboradong paghahanda ng sample. Sa pag-aaral na ito, sinukat ang TPC, TFC, TAC, at TPAC ng 239 na uri ng pigmented na bigas. Kinuha rin ang kanilang mid-infrared (mid-IR) spectra sa saklaw na 4000–400 cm⁻¹. Gumamit ang mga mananaliksik ng iba’t ibang regression algorithm tulad ng k-Nearest Neighbor (KNN), Decision Tree (DT), Gradient Boosting (GB), at Artificial Neural Network (ANN) upang makabuo ng mga modelong ginagamit sa prediksyon. Bago isagawa ang pagmomodelo, isinailalim muna ang FTIR spectra sa iba’t ibang preprocessing techniques gaya ng minimum–maximum normalization (MMN), vector normalization (VN), at standard normal variate (SNV), na sinabayan ng first-derivative (+1D) at second-derivative (+2D) na mga transpormasyon. Napag-alaman na ang pinakamainam na kombinasyon ng modelo at pretreatment ay ang mga sumusunod: ANN na may VN + 2D para sa TPC, KNN na may VN + 1D para sa TFC, GB na may MMN + 1D para sa TAC, at GB na may VN + 1D para sa TPAC. Ang pinakamataas na naitalang prediction accuracy ay 34.93% para sa TPC, 35.63% para sa TFC, 70.16% para sa TAC, at 38.71% para sa TPAC. Bagama’t magkakaiba ang antas ng pagiging tumpak ng prediksyon para sa bawat uri ng phytochemical, malinaw na ipinakikita ng mga resulta na may malaking potensyal ang pagsasama ng FTIR spectroscopy at mga machine-learning approach bilang isang mabilis, matipid, at epektibong paraan para sa pagsusuri at pag-profile ng mga phenolic compound sa pigmented na bigas, na nangangailangan lamang ng kaunting paghahanda ng sample.

Abstract Format

html

Language

English

Format

Electronic

Keywords

Rice; Fourier transform infrared spectroscopy Machine learning; Chemometrics

Upload Full Text

wf_yes

Embargo Period

12-9-2028

Available for download on Saturday, December 09, 2028

Share

COinS