Date of Publication

8-8-2023

Document Type

Master's Thesis

Degree Name

Master of Science in Chemistry

Subject Categories

Chemistry

College

College of Science

Department/Unit

Chemistry

Thesis Advisor

Drexel H. Camacho

Defense Panel Chair

Eric R. Punzalan

Defense Panel Member

Faith Marie G. Lagua
Armando M. Guidote, Jr.

Abstract/Summary

The search for innovative materials for technological applications depends on the rapid development of new reactions that produce new products with unique chemical structures. This work explores zinc stearate, an interesting material because their coordination and solid-state molecular packing substantially affect their physicochemical properties. Only limited studies have described its chemistry and reactivities. There is a need to explore more about this cheap material. This work investigated the structural changes in zinc stearate under different temperature conditions using Nuclear Magnetic Resonance (NMR) spectrometry. Results showed that the long stearate chain undergoes intercalation with another zinc stearate molecule that directs the terminal CH3 to the zinc basal plane of another molecule slightly affecting its chemical shift. The reaction of zinc stearate with an internal conjugated diyne, 2,4-hexadiyne, in the presence of acetic acid and catalyzed by Pd was investigated. The reaction afforded a new yellowish oil product with yield of 51.67%. FTIR and extensive 1D and 2D NMR techniques revealed that the new compound is (2E,4E)-hexa-2,4-diene-2,5-diyl distearate. It is a symmetrical compound, which is a double addition of the stearate component into the two triple bonds. A plausible reaction mechanism is proposed. The reaction offers a novel unique compound with polar functionalities at the center and having non-polar moieties at the peripheries, which should find applications in various fields.

Abstract Format

html

Language

English

Format

Electronic

Physical Description

xii, 77 leaves

Keywords

Zinc; Stearates; Nuclear magnetic resonance

Upload Full Text

wf_yes

Embargo Period

8-11-2024

Share

COinS