Determining intent of conversations through machine learning
Date of Publication
2018
Document Type
Master's Thesis
Degree Name
Master of Science in Computer Science
College
College of Computer Studies
Department/Unit
Computer Science
Thesis Adviser
Charibeth K. Cheng
Defense Panel Chair
Joel P. Ilao
Defense Panel Member
Judith J. Azcarraga
Rafael A. Cabredo
Abstract/Summary
Conversation is very important in the lives of human beings. Interaction between two or more people promotes an exchange of ideas and thoughts. Applications such as automated conversational agents have been seeing widespread use due to the importance of communication and are now being utilized in technologies such as in navigation apps. Conversational agents form responses based on the persons input. However, current conversational systems lack the initiative to provide additional information to the user since it lacks knowledge on the context of a conversation and the user's intent. By modeling a person's intent, these systems will have knowledge on the current direction of a conversation. Forum posts and other data from a Filipino forum site called Pinoy Exchange will be extracted to simulate conversations. Three different machine learning methods were tested: Naive Bayes, Decision Trees (particularly Random Forest), and Convolutional Neural Networks. These machine learning methods were used to create two models, one for classifying dialogue acts to represent a users intent, and the other to classify if a post is about to conclude or not. The dialogue act model that performed best is the Convolutional Neural Network and was able to classify the multi-label problem with a Hamming Loss of 7.45. The conversation end model had difficulties classifying concluding conversations due to the largely skewed dataset.
Abstract Format
html
Language
English
Format
Electronic
Accession Number
CDTG007616
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
1 computer disc ; 4 3/4 in.
Keywords
Communication; Machine learning
Recommended Citation
Del Mundo, G. V. (2018). Determining intent of conversations through machine learning. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/5528