Sarcasm recognition in speech using a real-time approach
Date of Publication
2015
Document Type
Master's Thesis
Degree Name
Master of Science in Computer Science
Subject Categories
Computer Sciences
College
College of Computer Studies
Department/Unit
Computer Science
Thesis Adviser
Merlin Teodosia C. Suarez
Defense Panel Chair
Jocelynn Cu
Defense Panel Member
Katrina Ysabel Solomon
Macario Cordel II
Abstract/Summary
This study focuses on the recognition of sarcasm in speech, and attempts to address the problem of inaccuracy with regard to identifying this particular audio signal. This problem widens the gap between computers and humans since interactions are not completely understandable using sarcastic comments. With this in mind, the goal is to create a model capable of identifying sarcasm which is generic enough to work not only on a specific set but also on any kind of sarcastic statements using audio signals. This was accomplished using machine learning and digital signal processing techniques appropriate for real time processing. Audio features like pitch, intensity, Mel Frequency Cepstral Coefficients (MFCC), and formants were experimented on using a new acted speech corpus that was annotated as sarcastic and non sarcastic by six participants which include the researcher. By using Support Vector Machine with polynomial kernel on a data set containing 0.4 second segments with 30% overlap, an accuracy and kappa of 69% and 0.39, respectively. The results suggest that pitch, intensity and certain MFCC and formant features are predictive of sarcasm. With only 10 features, SVM with polynomial kernel processes a single 0.4 second clip in 1.2 seconds making it suitable for real time processing.
Abstract Format
html
Language
English
Format
Electronic
Accession Number
CDTG006586
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
1 computer optical disc ; 4 3/4 in.
Keywords
Speech perception; Machine learning; Signal processing—Digital techniques
Upload Full Text
wf_no
Recommended Citation
Pascual, R. G. (2015). Sarcasm recognition in speech using a real-time approach. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/5073