Date of Publication
4-2012
Document Type
Master's Thesis
Degree Name
Master of Science in Chemical Engineering
Subject Categories
Chemical Engineering
College
Gokongwei College of Engineering
Department/Unit
Chemical Engineering
Thesis Adviser
Josephine Q. Borja
Joseph Auresenia
Defense Panel Chair
Cynthia Fabian
Defense Panel Member
Luis F. Razon
Nathaniel P. Dugos
Abstract/Summary
This study dealt with the cofermentation of rice straw hydrolysates using and Saccharomyces cerevisiae and Pachysolen tannophilus. Rice straw was pretreated with alkali-soaking and alkali-soaking with heat treatment to remove the lignin. Alkali-soaking with heat treatment proved to be more effective in removing lignin yielding 67.86% lignin removal compared to 45.13% removal in alkali-soaked rice straw. Pretreated rice straw was hydrolyzed using dilute acid (1.6%, 2%, and 3% w/v) and concentrated acid (18.032%, 27.048%, and 36.064% w/v). Time was varied at 0.5, 1, and 2 hours in two stages. The most suitable hydrolysate for fermentation was the products of the first stage dilute acid hydrolysis using 3% (w/v) acid concentration and 2 hours residence time, which produced 17.83 g/L of xylose and 7.25 g/L of glucose. Simulated sugar solution containing 20 g/L xylose and 10 g/L glucose was cofermented using the two yeasts at various pH and temperature Highest ethanol yield (0.109 g ethanol/ g glucose) was obtained at 30oC and pH of 4.5, but highest biomass yield (4.9175 g/L) was obtained at 35oC and pH 3.5. The best combination of temperature and pH in terms of ethanol yield was then applied to the actual rice straw hydrolysates which resulted in ethanol yield of 0.0478 g ethanol/ g glucose and a biomass yield of 0.6190 g/L. The fermentation of both simulated sugar solutions and rice straw hydrolysate at 30oC and pH 4.5 followed Monod equation. The kinetic parameters for the simulated sugar solution were: maximum specific growth rate (µm) = 0.31 h-1, saturation constant for glucose (Ks) = 6.41g/L, productivity constant for biomass per substrate consumed (YX/S) = 0.121, and productivity constant for ethanol per substrate consumed (YP/S) = 0.102 with a R2 value of 0.9765 and for the hydrolysates, µm=0.189 h-1, Ks=2.36g/L , YX/S=0.1, and YP/S=0.0427, with a R2 value of 0.8661. Comparison of these kinetic parameters indicate that for the simulated sugar solution, rate is faster and that the Monod equation is applicable to a higher range of substrate concentration.
Abstract Format
html
Language
English
Format
Electronic
Electronic File Format
MS WORD
Accession Number
CDTG005132
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
1 computer optical disc. ; 4 3/4 in.
Keywords
Renewable energy sources
Upload Full Text
wf_yes
Recommended Citation
Kang, J. C. (2012). Production of bioethanol through cofermentation of rice straw hydrolysates by saccharomyces cerevisiae and pachysolen tannophilus. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/4129