Date of Publication
2009
Document Type
Master's Thesis
Degree Name
Master of Science in Chemical Engineering
Subject Categories
Chemical Engineering
College
Gokongwei College of Engineering
Department/Unit
Chemical Engineering
Thesis Adviser
Luis F. Razon
Raymond Girard R. Tan
Defense Panel Chair
Joseph Auresenia
Defense Panel Member
Leonila C. Abella
Susan M. Gallardo
Abstract/Summary
Catalytic partial oxidation of methane (CPOM) has been recognized as a suitable method to produce synthesis gas for production of liquid fuel and hydrogen. CPOM, which is a mildly exothermic reaction, can be conducted autothermally in a reverse flow reactor (RFR) wherein the direction of flow is reversed cyclically. Implementation of real RFR is complicated. Recent published studies have focused mainly on numerical simulation and control strategy, but there have been few published experimental studies. This study describes a systematic experimental optimization of a laboratory scale RFR for CPOM on Ni-MgO/a-Al2O3 monolith catalyst using the response surface methodology. The effect of initial temperature (Tini), switching time (), total flowrate (F), molar feed ratio between methane and oxygen (M), and catalyst length were investigated. Hydrogen yield and methane conversion are used as the experimental responses. The steepest ascent path was established based on the first experimental design to determine the stationary point whose nature was confirmed by the second experimental design. The iteration of establishing the steepest ascent path and experimental design was done until the maximum point was specified. In this study, the optimum operating conditions were determined in the second experimental design. The analysis of reactor operation proved to be challenging due to the complex interplay of the different experimental factors. The following interactions were found to be significant for methane conversion: M*, F* and M*F. The interaction of F* also affected the hydrogen yield. The third order interaction of F**M was also found to be statistically significant. The optimum methane conversion value of 56.38% could be obtained by setting switching time, total flowrate and molar ratio of 4.24 minutes, 543ml/min and 1.575, respectively. The optimum value of hydrogen yield of 35.91% was reached by setting total flowrate, molar feed ratio and switching time of 540ml/min, 1.442 and 4.15 minutes, respectively.
Abstract Format
html
Language
English
Format
Electronic
Accession Number
CDTG004662
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
ix, 120 leaves ; 28 cm.
Keywords
Petroleum chemicals; Methane--Oxidation; Methane as fuel; Petrochemicals
Upload Full Text
wf_yes
Recommended Citation
Nguyen, K. T. (2009). Optimization of the partial oxidation of methane on Ni-MgO/a-alumina monolith catalyst in a reverse flow reactor using the method of steepest ascent. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/3811