Date of Publication
2005
Document Type
Master's Thesis
Degree Name
Master of Science in Information Technology
Subject Categories
Databases and Information Systems
College
College of Computer Studies
Department/Unit
Information Technology
Thesis Adviser
Sherwin E. Ona
Defense Panel Chair
Lissa Andrea K. Magpantay
Defense Panel Member
Glenn L. Sipin
Oliver A. Malabanan
Abstract/Summary
The performance of a speaker recognizer like the speaker verifier strongly depends on the input feature. The feature set has to be both highly discriminative and compact to get a good performance. This study aims to introduce a new approach of feature extraction specifically designed for Speaker Verification System. The feasibility of using a Genetic Algorithms/Decision Tree (GA/DT) hybrid approach to choose from the original MFCC (Mel-Frequency Cepstral Coefficient) data the set of feature vectors that appropriately represents personal speech characteristics of a speaker is investigated. The GA is used to evolve selected feature vectors and the decision tree (DT) algorithm is used to evaluate the fitness functions of the chromosomes (feature sets) evolved by the GA. Moreover, it evaluates and compares, in terms of speed and accuracy, the performance of the Speaker Verification System (SVS) using the General Approach and the SVS with the GA/DT Hybrid Approach. There are two (2) sets of data used in the experiments, namely, the clean data taken from the TIMIT database that is provided in the SPEAR database of CSLU and the unclean data taken from real life recordings of the speakers that deal with constant background noise. For the clean data, the performance of the two (2) systems and the existing work are all compared in terms of accuracy. The results show that the performance of the two systems is comparable with the existing work. Moreover, the SVS w/ the GA/DT hybrid approach performs better than the General Approach in terms of accuracy and speed. On the other hand, for the unclean data, the experimental results show that the SVS with the GA/DT hybrid approach performs better than the General Approach in terms of accuracy and speed but the results obtained is not as good as using a clean data. We still think that this is a good result though since we are able to find out that the idea we put in our proposed model worked. Perhaps in the future our proposed model would be improved further.
Abstract Format
html
Language
English
Format
Electronic
Accession Number
CDTG003823
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
1 computer optical disc ; 4 3/4 in.
Keywords
Bulacan State University; Strategic planning; Information storage and retrieval systems; Database searching; Genetic algorithms; Computer programs
Upload Full Text
wf_yes
Recommended Citation
Lagman, G. A. (2005). Information system strategic plan for Bulacan State University. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/3245