Pose estimation for soccer robot vision using genetic algorithms
Date of Publication
2002
Document Type
Master's Thesis
Degree Name
Master of Science in Computer Science
Subject Categories
Computer Sciences
College
College of Computer Studies
Department/Unit
Computer Science
Thesis Adviser
Elmer P. Dadios
Defense Panel Chair
Florante R. Salvador
Defense Panel Member
Eufemio Barcelon
Philip Chan
Abstract/Summary
This is an investigation of the applicability of a learning mechanism for the pose estimation of the soccer robot system used in Micro-Robot World Cup Soccer Tournament (MIROSOT). Current vision systems in a MIROSOT game use various techniques, such as conventional method and the use of specialized hardware for pose estimation. This research focused on pose estimation by incorporating genetic algorithm (GA) to the vision system. Two GAs were implemented: PGA/OGA (Position Genetic Algorithm/Orientation Genetic Algorithm) and GA2 (implementation of PGA/OGA combined). PGA/OGA performed the pose estimation task by subdividing the task into two parts, position estimation and orientation estimation. The first GA cycle is the PGA that is responsible for position estimation and the second is the OGA that is responsible for orientation estimation. GA2, on the other hand, performs the pose estimation task using one GA cycle. For PGA, the fitness function used is Histogram Similarity. The PGA has a 90.00% accuracy in determining the position of an object. For the OGA and GA2, several fitness functions were created, namely Two Circles, Two Triangles, Color Index and CTC (combination of Two Circles, Two Triangles and Color Index fitness function). The orientation results of GA is 80.00% accurate if only one object is present on the scene and 36.00% accurate when more objects are present on the scene. In terms of overall accuracy, the Two Triangles fitness function produced the best results of 64.83% accuracy. A drawback, however, is that GA inherently consumes a large amount of processing time.
Abstract Format
html
Language
English
Format
Accession Number
TG03321
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
1 v. (various foliations) ; 28 cm.
Keywords
Robot vision; Computer vision; Genetic algorithms; Combinatorial optimization
Recommended Citation
Barrido, S. C. (2002). Pose estimation for soccer robot vision using genetic algorithms. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/2927