Date of Publication
12-1995
Document Type
Master's Thesis
Degree Name
Master of Science in Computer Science
Subject Categories
Computer Sciences
College
College of Computer Studies
Department/Unit
Computer Science
Thesis Adviser
Arnulfo P. Azcarraga
Defense Panel Chair
Harry Alfonso Joson
Defense Panel Member
Kelsey Hartigan Go
Nelson Marcos
Abstract/Summary
Artificial neural network models, particularly the perceptron and the backpropagation network, do not perform lateral inhibition, a function commonly performed by biological neural networks. This study provides an artificial neural network model that performs lateral inhibition. The model is called a feedforward network with inhibitory lateral connections. A supervised learning algorithm for the said model is developed where weight-update rules, both for the feedforward weights and the inhibitory lateral weights, are derived using the gradient descent method. The mathematical derivation of the said weight-update rules are presented. Simulations are conducted to validate the derived supervised learning algorithm. Results of the simulation provide solutions to the XOR problem, the 3-input palindrome problem and the T-C problem. For these problems, a single hidden layer with two nodes are used. The derived learning algorithm is also generalized for multilayered feedforward networks with inhibitory lateral connections. The generalized supervised learning algorithm is simulated using the XOR problem and the T-C problem and solutions with two hidden layers are obtained, each hidden layer with a variable number of nodes.
Abstract Format
html
Language
English
Format
Accession Number
TG02450
Shelf Location
Archives, The Learning Commons, 12F Henry Sy Sr. Hall
Physical Description
74, [4] leaves, 28 cm.
Keywords
Algorithms; Neural circuitry; Feedforward control systems; Digital computer simulation; Computer networks
Upload Full Text
wf_yes
Recommended Citation
Alvarez, M. P. (1995). A learning algorithm for feedforward networks with inhibitory lateral connections. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/1698