The Pratt identity

Date of Publication

2001

Document Type

Bachelor's Thesis

Degree Name

Bachelor of Science in Mathematics

College

College of Science

Department/Unit

Mathematics and Statistics

Abstract/Summary

This thesis is an exposition of the articles Identities on Point-Line Figures in the Euclidean Plane by Guido M. Pinkernell and A Menelaus-Type Theorem for the Pentagram by Larry Hoehn published in the Mathematics Magazine in 1996 and 1993, respectively.

The focus of this study is an identity, called the Pratt identity, which was shown to hold in a pentagram by Hoehn. Hoehn used the Menelaus Theorem to prove the identity. Pinkernell provided an alternative proof which used only the Sine Law. This significantly shortened the proof of the Pratt identity on the Pentagram and made it possible to generalize the identity to many other point-line figures in the Euclidean plane and their duals.

Abstract Format

html

Language

English

Format

Print

Accession Number

TU10761

Shelf Location

Archives, The Learning Commons, 12F, Henry Sy Sr. Hall

Physical Description

[50] leaves

This document is currently not available here.

Share

COinS