Date of Publication
4-2014
Document Type
Bachelor's Thesis
Degree Name
Bachelor of Science in Chemical Engineering
Subject Categories
Chemical Engineering
College
Gokongwei College of Engineering
Department/Unit
Chemical Engineering
Thesis Adviser
Michael Angelo B. Promentilla
Defense Panel Chair
Luis F. Razon
Defense Panel Member
Cheryl Roxas
Laurence Gan Lim
Abstract/Summary
Pore structure, tortuosity and permeability are considered as key properties of porous materials such as cement pastes in understanding its durability. As such, image analysis techniques were used in this study to quantify pore size, effective porosity, tortuosity, and permeability from the microtomographic images of deteriorated pastes that were subjected to accelerated leaching. At a spatial resolution of 0.5 μm/voxel, the effective porosity (ϴe) was found to be in the ranges of 0.037 to 0.328. The characteristic pore size (d) using local thickness algorithm was found to be in the ranges of 1.406 to 3.589 microns. The geometric tortuosity (τ) based on random walk simulation in the percolating pore space was found to be in the ranges of 2.007 to 7.454. The permeability values (K) using NIST Permeability Stokes Solver ranges from magnitudes 10-14 to 10-17 m2. The results showed that as there is an increase in the effective porosity, geometric tortuosity decreases and water permeability increases. It is also observed that as the geometric tortuosity increases, the permeability decreases. These relationships are in agreement with previous reported literatures that use experimental and image analysis techniques. To model the relationship, the proposed mathematical model obtained is , with a correlation coefficient of 0.948.
Abstract Format
html
Language
English
Format
Electronic
Accession Number
CDTU017690
Shelf Location
Archives, The Learning Commons, 12F, Henry Sy Sr. Hall
Physical Description
1 computer optical disc ; 4 3/4 in.
Keywords
Lightweight concrete—Fracture; Concrete— Deterioration; Frost resistant concrete
Recommended Citation
Cortez, S. M., Papel, R. D., & Tablada, B. M. (2014). Characterization of microstructure-transport properties of deteriorated cement paste from computed tomography (CT) images. Retrieved from https://animorepository.dlsu.edu.ph/etd_bachelors/11282
Upload Full Text
wf_yes