Power output optimization OF DSSC with Fe-Ni cocopant, TiO2 photoanode and carbon nanotubes as counter electrode

Date of Publication

2014

Document Type

Master's Thesis

Degree Name

Master of Science in Chemical Engineering

College

Gokongwei College of Engineering

Department/Unit

Chemical Engineering

Thesis Adviser

Joseph L. Auresenia

Defense Panel Chair

Nathaniel P. Dugos

Defense Panel Member

Michael R. Mananghaya
Fritzie Hanna B. Baldovino
Renan Ma. T. Tanhueco

Abstract/Summary

Dye-sensitized solar cells (DSSCs) are seen to be as the promising alternative to silicon solar cell due to its simple and low-cost fabrication. The study made use of Fe-Ni doped TiO2 nanopowder using sol-gel method to form the anode and multi-walled carbon nanotubes (MWCNT) as the counter electrode. The experiment studied on the optimization of the performance of DSSC subjected to different factors such as TiO2 photoanode thickness, concentration of MWCNT counter electrode and incorporation of dopants such as Iron and Nickel to the photoanode component. In fabricating the DSSC, iodide/triiodide under acetonitrile solvent was prepared as electrolyte solution and cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4-dicarboxylato)-ruthenium(II) dye (N3) was used as sensitizer. Three factors were studied using RSM (Box-behnken method). Three different TiO2 photoanode film thicknesses with dopant ratio of Pure Fe, 1:1 Fe-Ni and Pure Ni were combined with three different amounts of MWCNT counter electrodes. The samples were characterized by SEM and UV-Vis spectroscopy to investigate the microstructure of the TiO2 film while XRD was done to investigate the crystalline property and particle size of the doped TiO2. The solar cells were tested under artificial light and sunlight. The optimum setup that gives the maximum power was the TiO2 thickness of 105.44 µm, 625.37 mg of CNT/10 mL solvent counter electrode concentration and dopant ratio of 2.175:1 Fe-Ni doped TiO2 (68.5% Fe, 31.5% Ni). It yielded a maximum efficiency of 3.77% . Doping by sol-gel method for the TiO2 photoanode of DSSC gave a good result for minimizing the cracks developed in its microstructure which resulted into higher efficiency compared to undoped TiO2.

Abstract Format

html

Language

English

Format

Electronic

Accession Number

CDTG005673

Shelf Location

Archives, The Learning Commons, 12F Henry Sy Sr. Hall

Physical Description

1 computer optical disc ; 4 3/4 in.

This document is currently not available here.

Share

COinS