Leaf epidermal properties of selected forest tree species from DLSU Laguna Campus

Date of Publication


Document Type

Bachelor's Thesis

Degree Name

Bachelor of Science in Biology


College of Science



Thesis Adviser

Mariquit M. De Los Reyes

Defense Panel Chair

Mary Jane C. Flores


The study examined the leaf epidermal properties of Ficus ulmifolia Lam. (Is-is), Hibiscus tiliaceus Linn. (Malobago), and Melanolepis multiglandulosa (Reinw. ex Blume) Rchb. & Zoll. (Alim) collected from DLSU Laguna Campus. The leaf properties, wettability, oleophilicity, and particle retention were measured using undamaged and mature leaves that were detached from freshly collected twigs. The leaf surface structures were examined using digital and scanning electron microscopy. Leaves were exposed to three treatments, elevated temperatures (45°C to 49°C), light intensity (4,500 lumens), and carbon dioxide concentration (1800-2300 ppm) and the same leaf properties were measured. Is-is had non-glandular, unicellular filiform trichomes that were sparsely distributed on the leaf, exposing the stomata and ridge-like structures that could be attributed to the waxy epidermal layer folding. Alim had multiradiate stellates, partially covering the leaf surface. Malobago had a dense intertwined network of 8-arm and multiradiate stellates. Alim and Malobago had a good coverage of trichomes and exhibited high contact angles (~140°), reaching the lower limit of superhydrophobicity. The oil adsorption capacity of Malobago was 155.422% while that for Alim was 257.495%. Malobago and Alim results verified that the leaf surface properties are influenced by the structures on the epidermal layer as reported in literatures. Five-hour exposures of detached leaves to the treatments gave interesting results. For Malobago, a high trichome density was maintained under all treatments. It is possible that the network of intertwined stellates gave rigidity to the leaf. This was consistent with the stable wettability exhibited by Malobago (contact angles of 138.042 to 147.377°). However, for Is-is that had the least trichome density, oleophilicity was found stable under all the treatments (341.660%). It is possible that the leafs chemical structures played an important role here. For particle retention capacity

Abstract Format






Accession Number


Shelf Location

Archives, The Learning Commons, 12F, Henry Sy Sr. Hall

Physical Description

1 computer disc ; 4 3/4 in.


Forest plants--Philippines; Foliar diagnosis--Philippines; DLSU Laguna Campus

This document is currently not available here.