Title

Fabrication and characterization of tin oxide nanomaterial as electronic nose sensor for evaluation of meat freshness

Date of Publication

2014

Document Type

Bachelor's Thesis

Degree Name

Bachelor of Science in Premed Physics

Subject Categories

Physics

College

College of Science

Department/Unit

Physics

Thesis Adviser

Gil Nonato Santos
Derrick Ethelbhert Yu

Defense Panel Chair

Romeric F. Pobre

Defense Panel Member

Emmanuel Rodulfo
Cristopher Que

Abstract/Summary

Meat is highly prone to spoilage due to bacterial growth which can release off-odors and produce slime. In order to protect people from dangerous health effects brought about the consumption of spoiled meat, an electronic nose system was constructed to evaluate the freshness of meat. Tin Oxide nanomaterials were synthesized using the Horizontal Vapor Phase Growth (HVPG) method. The grown nanomaterial was then characterized under the Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray (EDX). It was fabricated into a device which was then connected to a data acquisition system. The fabricated sensor, alongside a COâ‚‚ sensor, humidity sensor, and temperature sensor were exposed to the meat sample for 3 days with 10 hours data acquisition each day. The odor of the fresh meat and the spoiled meat were analyzed using Headspace Solid Phase Microextraction (SPME) and Gas Chromatograph - Mass Spectrometry. Results showed that there was an increase in the voltage reading of the fabricated gas sensor as the meat was spoiled for 3 days. Results from the SPME and GC-MS also show that there was only the compound, trimethylsilyl flouride found in the meat oder when it was fresh and several compounds such as Indole and Palmitic acid were found in the spoiled meat odor. Therefore a relationship between the voltage readings and the presence of the volatile compounds were established to be direct.

Abstract Format

html

Language

English

Format

Print

Accession Number

TU18391

Shelf Location

Archives, The Learning Commons, 12F, Henry Sy Sr. Hall

Physical Description

xi, 59, 6 leaves, illustrations (some color), 28 cm.

Keywords

Nanotechnology; Meat inspection—Equipment and supplies

Embargo Period

4-26-2021

This document is currently not available here.

Share

COinS